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1 Radiation Field or Far-Field Approximation

Figure 1:

In the previous lecture, we have derived the relation of the vector and scalar
potentials to the sources J and %. They are given by

A(r) = µ

˚
V

dr′J(r′)
e−jβ|r−r

′|

4π|r− r′|
(1.1)

Φ(r) =
1

ε

˚
V

dr′%(r′)
e−jβ|r−r

′|

4π|r− r′|
(1.2)

The integrals in (1.1) and (1.2) are normally untenable, but when the observa-
tion point is far from the source, approximation to the integral can be made
giving it a nice physical interpretation.

Figure 2:
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1.1 Far-Field Approximation

When |r| � |r′|, then |r − r′| ≈ r − r′ · r̂, where r = |r| and r′ = |r′|. This
approximation can be shown algebraically or by geometrical argument as shown
in Figure 2. Thus (1.1) above becomes

A(r) ≈ µ

4π

˚
V

dr′
µJ(r′)

r − r′ · r̂
e−jβr+jβr

′·r̂ ≈ µe−jβr

4πr

˚
V

dr′J(r′)ejβr
′·r̂ (1.3)

In the above we have made used of that 1/(1 − ∆) ≈ 1 when ∆ is small, but
ejβ∆ 6= 1, unless jβ∆ � 1. Hence, we keep the exponential term in (1.3) but
simplify the denominator to arrive at the last expression above.

If we let βββ = βr̂, and r′ = x̂x′ + ŷy′ + ẑz′, then

ejβr
′·r̂ = ejβββ·r

′
= ejβxx

′+jβyy
′+jβzz

′
(1.4)

Therefore (1.3) resembles a 3D Fourier transform integral, namely

A(r) ≈ µe−jβr

4πr

˚
V

dr′J(r′)ejβ·r
′

(1.5)

and (1.5) can be rewritten as

A(r) ∼=
µe−jβr

4πr
F(βββ) (1.6)

where

F(βββ) =

˚
V

dr′J(r′)ejβ·r
′

(1.7)

is the 3D Fourier transform of J(r′) with β = r̂β.
It is to be noted that this is not a normal 3D Fourier transform because

|β|2 = βx
2 + βy

2 + βz
2 = β2. In other words, the length of the vector β is

fixed to be β. It is the 3D “Fourier transform” of the current source J(r′) with
Fourier variables, βx, βy, βz lying on a sphere of radius β and βββ = βr̂. This
spherical surface in the Fourier space is also called the Ewald’s sphere. In a
normal 3D Fourier transform, βx

2 + βy
2 + βz

2 has values ranging from zero to
infinity.

1.2 Locally Plane Wave Approximation

We can write r̂ or βββ in terms of direction cosines in spherical coordinates or
that

r̂ = x̂ cosφ sin θ + ŷ sinφ sin θ + ẑ cos θ (1.8)

Hence

F(βββ) = F(βr̂) = F(β, θ, φ) (1.9)
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Also in (1.6), when r � r′ · r̂, e−jβr is now a rapidly varying function of r while,
F(βββ) is only a slowly varying function of θ and φ, the observation angles. In other
words, the prefactor in (1.6), exp(−jβr)/r, can be thought of as resembling a
spherical wave. Hence, if one follows a ray of this spherical wave and moves in
the r direction, the predominant variation of the field is due to e−jβr, whereas
the direction of the vector β changes little, and hence F(β) changes little.

The above shows that in the far field, the wave radiated by a finite source
resembles a spherical wave. Moreover, a spherical wave resembles a plane wave
when one is sufficiently far from the source. Hence, we can write e−jβr = e−jβββ·r

where βββ = r̂β and r = r̂r so that a spherical wave resembles a plane wave
locally. This phenomenon is shown in Figure 3.

Figure 3: A spherical wave emanating from a source becomes locally a plane
wave in the far field.

Then, it is clear that with the plane-wave approximation, ∇ → −jβββ = −jβr̂,
and

H =
1

µ
∇×A ≈ −j β

µ
r̂ × (θ̂Aθ + φ̂Aφ) = j

β

µ
(θ̂Aφ − φ̂Aθ) (1.10)

Similarly

E =
1

jωε
∇×H ∼= −jω(θ̂Aθ + φ̂Aφ) (1.11)
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Notice that β = βr̂ is orthogonal to E and H in the far field, a property of a
plane wave. Moreover, there are more than one way to derive the electric field
E. Using (1.10) for the magnetic field, the electric field can also be written as

E =
1

jωµε
∇×∇×A (1.12)

Using the formula for the double-curl operator, the above can be rewritten as

E =
1

jωµε

(
−∇∇ ·A−∇2A

)
=

1

jωµε

(
−ββ + β2I

)
·A (1.13)

where we have used that ∇2A = −β2A. Alternatively, we can rewrite the above
as

E = −jω
(
−β̂β̂ + I

)
·A = −jω

(
−r̂r̂ + I

)
·A (1.14)

Since I = r̂r̂ + θ̂θ̂ + φ̂φ̂, then the above becomes

E = −jω
(
θ̂θ̂ + φ̂φ̂

)
·A = −jω(θ̂Aθ + φ̂Aφ) (1.15)

which is the same as previously derived. It also shows that the electric field
is transverse to the β vector. We can also arrive at the above by lettering
E = −jωA−∇Φ, and using the appropriate formula for the scalar potential.

Furthermore, it can be shown that in the far field, using the plane-wave
approximation,

|E|/|H| ≈ η (1.16)

where η is the intrinsic impedance of free space, which is a property of a plane
wave. Moreover, one can show that the time average Poynting’s vector in the
far field is

〈S〉 ≈ 1

2η
|E|2r̂ (1.17)

which resembles also the property of a plane wave. Since the radiated field is a
spherical wave, the Poynting’s vector is radial. Therefore,

〈S〉 = r̂Sr(θ, φ) (1.18)

The plot of |E(θ, φ)| is termed the far-field pattern or the radiation pattern of an
antenna or the source, while the plot of |E(θ, φ)|2 is its far-field power pattern.

1.3 Directive Gain Pattern Revisited

Once the far-field power pattern Sr is known, the total power radiated by the
antenna can be found by

PT =

ˆ π

0

ˆ 2π

0

r2 sin θdθdφSr(θ, φ) (1.19)
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The above evaluates to a constant independent of r due to energy conservation.
Now assume that this same antenna is radiating isotropically in all directions,
then the average power density of this fictitious isotropic radiator as r →∞ is

Sav =
PT

4πr2
(1.20)

A dimensionless directive gain pattern can be defined such that

G(θ, φ) =
Sr(θ, φ)

Sav
=

4πr2Sr(θ, φ)

PT
(1.21)

The above function is independent of r in the far field since Sr ∼ 1/r2 in the far
field. The directivity of an antenna D = max(G(θ, φ)), is the maximum value
of the directive gain. It is to be noted that by its mere definition,

ˆ
dΩG(θ, φ) = 4π (1.22)

where
´
dΩ =

´ π
0

´ 2π

0
sin θdθdφ. It is seen that since the directive gain pattern

is normalized, when the radiation power is directed to the main lobe of the
antenna, the corresponding side lobes and back lobes will be diminished.

An antenna also has an effective area or aperture, such that if a plane wave
carrying power density denoted by Sinc impinges on the antenna, then the power
received by the antenna, Preceived is given by

Preceived = SincAe (1.23)

A wonderful relationship exists between the directive gain pattern G(θ, φ) and
the effective aperture, namely that1

Ae =
λ2

4π
G(θ, φ) (1.24)

Therefore, the effective aperture of an antenna is also direction dependent.

1The proof of this formula is beyond the scope of this course.
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Figure 4:
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